Overview of VideoCLEF 2008: Automatic Generation of Topic-based Feeds for Dual Language Audio-Visual Content

نویسندگان

  • Martha Larson
  • Eamonn Newman
  • Gareth J. F. Jones
چکیده

The VideoCLEF track, introduced in 2008, aims to develop and evaluate tasks related to analysis of and access to multilingual multimedia content. In its first year, VideoCLEF piloted the Vid2RSS task, whose main subtask was the classification of dual language video (Dutchlanguage television content featuring English-speaking experts and studio guests). The task offered two additional discretionary subtasks: feed translation and automatic keyframe extraction. Task participants were supplied with Dutch archival metadata, Dutch speech transcripts, English speech transcripts and 10 thematic category labels, which they were required to assign to the test set videos. The videos were grouped by class label into topic-based RSS-feeds, displaying title, description and keyframe for each video. Five groups participated in the 2008 VideoCLEF track. Participants were required to collect their own training data; both Wikipedia and general web content were used. Groups deployed various classifiers (SVM, Naive Bayes and k-NN) or treated the problem as an information retrieval task. Both the Dutch speech transcripts and the archival metadata performed well as sources of indexing features, but no group succeeded in exploiting combinations of feature sources to significantly enhance performance. A small scale fluency/adequacy evaluation of the translation task output revealed the translation to be of sufficient quality to make it valuable to a non-Dutch speaking English speaker. For keyframe extraction, the strategy chosen was to select the keyframe from the shot with the most representative speech transcript content. The automatically selected shots were shown, with a small user study, to be competitive with manually selected shots. Future years of VideoCLEF will aim to expand the corpus and the class label list, as well as to extend the track to additional tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Dual Language Audio-Visual Content: Introduction to the VideoCLEF 2008 Pilot Benchmark Evaluation Task

VideoCLEF is a new track for the CLEF 2008 campaign. This track aims to develop and evaluate tasks in analyzing multilingual video content. A pilot of a Vid2RSS task involving assigning thematic class labels to video kicks off the VideoCLEF track in 2008. Task participants deliver classification results in the form of a series of feeds, one for each thematic class. The data for the task are dua...

متن کامل

Overview of VideoCLEF 2009: New Perspectives on Speech-based Multimedia Content Enrichment

VideoCLEF 2009 offered three tasks related to enriching video content for improved multimedia access in a multilingual environment. For each task, video data (Dutch-language television, predominantly documentaries) accompanied by speech recognition transcripts were provided. The Subject Classification Task involved automatic tagging of videos with subject theme labels. The best performance was ...

متن کامل

Comparing the Impact of Audio-Visual Input Enhancement on Collocation Learning in Traditional and Mobile Learning Contexts

: This study investigated the impact of audio-visual input enhancement teaching techniques on improving English as Foreign Language (EFL) learnersˈ collocation learning as well as their accuracy concerning collocation use in narrative writing. In addition, it compared the impact and efficiency of audio-visual input enhancement in two learning contexts, namely traditional and mo...

متن کامل

VideoCLEF 2008: ASR Classification based on Wikipedia Categories

This article describes our participation at the VideoCLEF track of the CLEF campaign 2008. We designed and implemented a prototype for the classification of the Video ASR data. Our approach was to regard the task as text classification problem. We used terms from Wikipedia categories as training data for our text classifiers. For the text classification the Naive-Bayes and kNN classifier from t...

متن کامل

Semi-Automatic Annotation and Retrieval of Visual Content Using the Topic Map Technology

There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is ine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008